77 research outputs found

    Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time

    Get PDF
    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or during the base excision repair pathways. Here we established a new real-time assay to assess an imbalance of DNA SSB repair by indirectly measuring PARP-1 activation through the depletion of intracellular NAD(P)H. A water-soluble tetrazolium salt is used to monitor the amount of NAD(P)H in living cells through its reduction to a yellow colored water-soluble formazan dye. While this assay is not a direct method, it does not require DNA extraction or alkaline treatment, both of which could potentially cause an artifactual induction of SSBs. In addition, it takes only 4 h and requires less than a half million cells to perform this measurement. Using this assay, we demonstrated that the dose- and time-dependent depletion of NAD(P)H in XRCC1-deficient CHO cells exposed to methyl methanesulfonate. This decrease was almost completely blocked by a PARP inhibitor. Furthermore, methyl methanesulfonate reduced NAD(P)H in PARP-1+/+cells, whereas PARP-1Âż/Âż cells were more resistant to the decrease in NAD(P)H. These results indicate that the analysis of intracellular NAD(P)H level using water-soluble tetrazolium salt can assess an imbalance of SSB repair in living cells in real time

    Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of gene expression profiling in both clinical and laboratory settings would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies could yield useful information on baseline fluctuations in gene expression, although control animal data has not been available on a scale and in a form best served for data-mining.</p> <p>Results</p> <p>A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques.</p> <p>Conclusion</p> <p>The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selective, or altered by fasting were also identified and functionally categorized. Better characterization of gene expression variability in control animals will aid in the design of toxicogenomics studies and in the interpretation of their results.</p

    Participation in and attitude towards the national immunization program in the Netherlands: data from population-based questionnaires

    Get PDF
    Contains fulltext : 108971.pdf (publisher's version ) (Open Access)BACKGROUND: Knowledge about the determinants of participation and attitude towards the National Immunisation Program (NIP) may be helpful in tailoring information campaigns for this program. Our aim was to determine which factors were associated with nonparticipation in the NIP and which ones were associated with parents' intention to accept remaining vaccinations. Further, we analyzed possible changes in opinion on vaccination over a 10 year period. METHODS: We used questionnaire data from two independent, population-based, cross-sectional surveys performed in 1995-96 and 2006-07. For the 2006-07 survey, logistic regression modelling was used to evaluate what factors were associated with nonparticipation and with parents' intention to accept remaining vaccinations. We used multivariate multinomial logistic regression modelling to compare the results between the two surveys. RESULTS: Ninety-five percent of parents reported that they or their child (had) participated in the NIP. Similarly, 95% reported they intended to accept remaining vaccinations. Ethnicity, religion, income, educational level and anthroposophic beliefs were important determinants of nonparticipation in the NIP. Parental concerns that played a role in whether or not they would accept remaining vaccinations included safety of vaccinations, maximum number of injections, whether vaccinations protect the health of one's child and whether vaccinating healthy children is necessary. Although about 90% reported their opinion towards vaccination had not changed, a larger proportion of participants reported to be less inclined to accept vaccination in 2006-07 than in 1995-96. CONCLUSION: Most participants had a positive attitude towards vaccination, although some had doubts. Groups with a lower income or educational level or of non-Western descent participated less in the NIP than those with a high income or educational level or indigenous Dutch and have been less well identified previously. Particular attention ought to be given to these groups as they contribute in large measure to the rate of nonparticipation in the NIP, i.e., to a greater extent than well-known vaccine refusers such as specific religious groups and anthroposophics. Our finding that the proportion of the population inclined to accept vaccinations is smaller than it was 10 years ago highlights the need to increase knowledge about attitudes and beliefs regarding the NIP

    A Multi-cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation

    Get PDF
    Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how events are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently. To test the consistency, integrability and combined explanatory power of current prevailing hypotheses, we built an integrated clock-and-wavefront model including submodels of the intracellular segmentation clock, intercellular segmentation-clock coupling via Delta/Notch signaling, an FGF8 determination front, delayed differentiation, clock-wavefront readout, and differential-cell-cell-adhesion-driven cell sorting. We identify inconsistencies between existing submodels and gaps in the current understanding of somitogenesis mechanisms, and propose novel submodels and extensions of existing submodels where necessary. For reasonable initial conditions, 2D simulations of our model robustly generate spatially and temporally regular somites, realistic dynamic morphologies and spontaneous emergence of anterior-traveling stripes of Lfng. We show that these traveling stripes are pseudo-waves rather than true propagating waves. Our model is flexible enough to generate interspecies-like variation in somite size in response to changes in the PSM growth rate and segmentation-clock period, and in the number and width of Lfng stripes in response to changes in the PSM growth rate, segmentation-clock period and PSM length

    Is (poly-) substance use associated with impaired inhibitory control? A mega-analysis controlling for confounders.

    Get PDF
    Many studies have reported that heavy substance use is associated with impaired response inhibition. Studies typically focused on associations with a single substance, while polysubstance use is common. Further, most studies compared heavy users with light/non-users, though substance use occurs along a continuum. The current mega-analysis accounted for these issues by aggregating individual data from 43 studies (3610 adult participants) that used the Go/No-Go (GNG) or Stop-signal task (SST) to assess inhibition among mostly "recreational" substance users (i.e., the rate of substance use disorders was low). Main and interaction effects of substance use, demographics, and task-characteristics were entered in a linear mixed model. Contrary to many studies and reviews in the field, we found that only lifetime cannabis use was associated with impaired response inhibition in the SST. An interaction effect was also observed: the relationship between tobacco use and response inhibition (in the SST) differed between cannabis users and non-users, with a negative association between tobacco use and inhibition in the cannabis non-users. In addition, participants' age, education level, and some task characteristics influenced inhibition outcomes. Overall, we found limited support for impaired inhibition among substance users when controlling for demographics and task-characteristics

    Multi-scale cell-based computational models of vertebrate segmentation and somitogenesis illuminate coordination of developmental mechanisms across scales

    No full text
    Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how the events they generate are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently. To test the consistency, integrability and combined explanatory power of current prevailing hypotheses, we built an integrated clock-and-wavefront model including submodels of the intracellular segmentation clock, intercellular segmentation-clock coupling via Delta/Notch signaling, an FGF8 determination front, delayed differentiation, clock-wavefront readout, and differential-cell-cell-adhesion-driven cell sorting. We identified inconsistencies between existing submodels and gaps in the current understanding of somitogenesis mechanisms, and proposed novel submodels and extensions of existing submodels where necessary. For reasonable initial conditions, two-dimensional simulations of our model robustly generate spatially and temporally regular somites, realistic dynamic morphologies and spontaneous emergence of anterior-traveling "pseudo waves" of Lfng. Our model is flexible enough to generate interspecies-like variation in somite size in response to changes in the PSM growth rate and segmentation-clock period, and in the number and width of Lfng stripes in response to changes in the PSM growth rate, segmentation-clock period and PSM length
    • …
    corecore